Copied to
clipboard

G = C3×C42⋊C4order 192 = 26·3

Direct product of C3 and C42⋊C4

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C3×C42⋊C4, C424C12, (C4×C12)⋊5C4, (C6×D4)⋊4C4, (C2×D4)⋊2C12, C23⋊C42C6, C41D4.2C6, C23.3(C3×D4), (C22×C6).3D4, C6.34(C23⋊C4), (C6×D4).176C22, (C3×C23⋊C4)⋊8C2, (C2×C4).1(C2×C12), (C2×D4).3(C2×C6), C2.8(C3×C23⋊C4), (C2×C12).12(C2×C4), (C3×C41D4).9C2, (C2×C6).75(C22⋊C4), C22.12(C3×C22⋊C4), SmallGroup(192,159)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C3×C42⋊C4
C1C2C22C23C2×D4C6×D4C3×C23⋊C4 — C3×C42⋊C4
C1C2C22C2×C4 — C3×C42⋊C4
C1C6C2×C6C6×D4 — C3×C42⋊C4

Generators and relations for C3×C42⋊C4
 G = < a,b,c,d | a3=b4=c4=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c, dcd-1=b2c >

Subgroups: 242 in 86 conjugacy classes, 26 normal (18 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C2×C4, C2×C4, D4, C23, C23, C12, C2×C6, C2×C6, C42, C22⋊C4, C2×D4, C2×D4, C2×C12, C2×C12, C3×D4, C22×C6, C22×C6, C23⋊C4, C41D4, C4×C12, C3×C22⋊C4, C6×D4, C6×D4, C42⋊C4, C3×C23⋊C4, C3×C41D4, C3×C42⋊C4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, C2×C12, C3×D4, C23⋊C4, C3×C22⋊C4, C42⋊C4, C3×C23⋊C4, C3×C42⋊C4

Permutation representations of C3×C42⋊C4
On 24 points - transitive group 24T353
Generators in S24
(1 5 11)(2 6 9)(3 7 10)(4 8 12)(13 17 23)(14 18 24)(15 19 21)(16 20 22)
(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 2 3 4)(5 6 7 8)(9 10 12 11)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 16 2 13)(3 14 4 15)(5 20 6 17)(7 18 8 19)(9 23 11 22)(10 24 12 21)

G:=sub<Sym(24)| (1,5,11)(2,6,9)(3,7,10)(4,8,12)(13,17,23)(14,18,24)(15,19,21)(16,20,22), (13,14,15,16)(17,18,19,20)(21,22,23,24), (1,2,3,4)(5,6,7,8)(9,10,12,11)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,16,2,13)(3,14,4,15)(5,20,6,17)(7,18,8,19)(9,23,11,22)(10,24,12,21)>;

G:=Group( (1,5,11)(2,6,9)(3,7,10)(4,8,12)(13,17,23)(14,18,24)(15,19,21)(16,20,22), (13,14,15,16)(17,18,19,20)(21,22,23,24), (1,2,3,4)(5,6,7,8)(9,10,12,11)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,16,2,13)(3,14,4,15)(5,20,6,17)(7,18,8,19)(9,23,11,22)(10,24,12,21) );

G=PermutationGroup([[(1,5,11),(2,6,9),(3,7,10),(4,8,12),(13,17,23),(14,18,24),(15,19,21),(16,20,22)], [(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,2,3,4),(5,6,7,8),(9,10,12,11),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,16,2,13),(3,14,4,15),(5,20,6,17),(7,18,8,19),(9,23,11,22),(10,24,12,21)]])

G:=TransitiveGroup(24,353);

39 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D4E4F4G6A6B6C6D6E6F6G6H6I6J12A···12F12G···12N
order122222334444444666666666612···1212···12
size11244811444888811224444884···48···8

39 irreducible representations

dim1111111111224444
type++++++
imageC1C2C2C3C4C4C6C6C12C12D4C3×D4C23⋊C4C42⋊C4C3×C23⋊C4C3×C42⋊C4
kernelC3×C42⋊C4C3×C23⋊C4C3×C41D4C42⋊C4C4×C12C6×D4C23⋊C4C41D4C42C2×D4C22×C6C23C6C3C2C1
# reps1212224244241224

Matrix representation of C3×C42⋊C4 in GL4(𝔽7) generated by

4000
0400
0040
0004
,
2301
1015
4446
0006
,
4546
6060
3331
3420
,
1614
6661
2563
3321
G:=sub<GL(4,GF(7))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[2,1,4,0,3,0,4,0,0,1,4,0,1,5,6,6],[4,6,3,3,5,0,3,4,4,6,3,2,6,0,1,0],[1,6,2,3,6,6,5,3,1,6,6,2,4,1,3,1] >;

C3×C42⋊C4 in GAP, Magma, Sage, TeX

C_3\times C_4^2\rtimes C_4
% in TeX

G:=Group("C3xC4^2:C4");
// GroupNames label

G:=SmallGroup(192,159);
// by ID

G=gap.SmallGroup(192,159);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,1683,1522,248,2951,375,6053]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^4=c^4=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c,d*c*d^-1=b^2*c>;
// generators/relations

׿
×
𝔽